فیلترها/جستجو در نتایج    

فیلترها

سال

بانک‌ها



گروه تخصصی











متن کامل


نویسندگان: 

اطلاعات دوره: 
  • سال: 

    2021
  • دوره: 

    80
  • شماره: 

    11
  • صفحات: 

    0-0
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    35
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 35

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

Behdani Zahra | Darehmiraki Majid

اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    3
  • شماره: 

    2
  • صفحات: 

    217-244
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    4
  • دانلود: 

    0
چکیده: 

The Fuzzy K-Nearest Neighbour (FKNN) method is a classification approach that integrates fuzzy theories with the K-Nearest Neighbour classifier. The algorithm computes the degree of membership for a given dataset within each class and then chooses the class with the highest degree of membership as the assigned classification outcome. This algorithm has several applications in regression problems. When the mathematical model of the data is not known, this method can be used to estimate and approximate the value of the response variable. This paper introduces a method, which incorporates a parameter distance measure to empower decision makers to make precise selections across several levels. Furthermore, we provide an analysis of the algorithm's strengths and shortcomings, as well as a comprehensive explanation of the distinctions between the closest neighbour approach in tasks of classification and regression. Finally, to further elucidate the principles, we present a range of examples that demonstrate the application of closest neighbour algorithms in the classification and regression of fuzzy numbers.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 4

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
عنوان: 
نویسندگان: 

اطلاعات دوره: 
  • سال: 

    1402
  • دوره: 

  • شماره: 

  • صفحات: 

    -
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    49
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 49

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
نویسندگان: 

LIAO Y. | VEMURI V.R.

نشریه: 

COMPUTERS AND SECURITY

اطلاعات دوره: 
  • سال: 

    2002
  • دوره: 

    21
  • شماره: 

    5
  • صفحات: 

    439-448
تعامل: 
  • استنادات: 

    1
  • بازدید: 

    141
  • دانلود: 

    0
کلیدواژه: 
چکیده: 

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 141

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 1 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
نویسندگان: 

JAMSHIDI YAZDAN | NEZAMABADI POUR HOSSEIN

اطلاعات دوره: 
  • سال: 

    2013
  • دوره: 

    4
  • شماره: 

    4
  • صفحات: 

    51-60
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    313
  • دانلود: 

    0
چکیده: 

As networking and communication technology become more widespread, the quantity and impact of system attackers have been increased rapidly. The methodology of intrusion detection (IDS) is generally classified into two broad categories according to the detection approaches: misuse detection and anomaly detection. In misuse detection approach, abnormal system behavior is defined at first, and then any other behavior is defined as normal behavior. The main goal of the anomaly detection approach is to construct a model representing normal activities. Then, any deviation from this model can be considered as an anomaly, and recognized to be an attack. Recently much more attention is paid to the application of lattice theory in different fields. In this work we propose a lattice based Nearest neighbor classifier capable of distinguishing between bad connections, called attacks, and good normal connections. A new nonlinear valuation function is introduced to tune the performance of the proposed model. The performance of the algorithm was evaluated by using KDD Cup 99 Data Set, the benchmark dataset used by Intrusion detection Systems researchers. Simulation results confirm the effectiveness of the proposed method.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 313

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 12
نویسنده: 

Khodabakhshi Masoud | FARTASH MEHDI

اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    5
تعامل: 
  • بازدید: 

    1613
  • دانلود: 

    0
چکیده: 

FINANCIAL ABUSES AND FRAUD IN TRANSACTION BANKING HAS BEEN INCREASED BECAUSE OF USING MODERN BANKING SYSTEM. THESE ABUSES LOSE SIGNIFICANT FINANCIAL RESOURCES AND DECREASE TRUST OF CUSTOMERS IN USE OF MODERN BANKING SYSTEM AND REDUCE EFFECTIVENESS OF THESE SYSTEMS IN OPTIMUM CAPITAL MANAGEMENT AND FINANCIAL TRANSACTIONS. ALTHOUGH THE BEST WAY TO REDUCE FRAUD IS PREVENTING FRAUD BUT THE FRAUDSTERS ACHIEVE THEIR GOALS IN SOME WAYS. SO WE NEED METHODS TO IDENTIFY SUSPICIOUS TRANSACTION. IN RECENT YEARS, DATA MINING TECHNIQUES HAVE BEEN ABLE TO SUCCESSFULLY PREVENT MONEY LAUNDERING AND DETECT CREDIT CARD FRAUD. IN THIS STUDY WE USED K-Nearest neighbor TECHNIQUE WITH ASSOCIATION RULES TO IMPROVE ACCURACY OF ALGORITHMS FOR DETECTING OUTLIERS IN TRANSACTIONS WHICH IS USED IN CREDIT CARD IN ELECTRONIC BANKING SYSTEM. FINALLY, THE RESULTS OF PROPOSED METHOD IN TERMS OF ACCURACY AND SPEED HAVE BEEN COMPARED AND EVALUATED WITH OTHER METHODS.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 1613

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0
مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources
اطلاعات دوره: 
  • سال: 

    2016
  • دوره: 

    13
  • شماره: 

    4
  • صفحات: 

    14-32
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    302
  • دانلود: 

    0
چکیده: 

Guanidine hydrochloride has been widely used in the initial recovery steps of active protein from the inclusion bodies in aqueous two-phase system (ATPS). Knowledge of the guanidine hydrochloride effect on the liquid-liquid equilibrium (LLE) phase diagram behavior is still inadequate and no comprehensive theory exists for the prediction of the experimental trends. Therefore, the effect of the guanidine hydrochloride on the phase behavior of PEG4000+potassium phosphate+ water system at different guanidine hydrochloride concentrations and pH was investigated in this study. To fill the theoretical gaps, the typical support vector machines were applied was applied to the k-Nearest neighbor method in order to develop a regression model to predict the LLE equilibrium of guanidine hydrochloride in the above mentioned system. Its advantage is its simplicity and good performance, with the disadvantage of an increase in the execution time. The results of our method are quite promising; they were clearly better than those obtained by well-established methods such as Support Vector Machines, k-Nearest neighbor and Random Forest. It is shown that the obtained results are more adequate than those provided by other common machine learning algorithms.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 302

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    1395
  • دوره: 

    3
تعامل: 
  • بازدید: 

    392
  • دانلود: 

    159
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 392

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 159
اطلاعات دوره: 
  • سال: 

    1391
  • دوره: 

    3
  • شماره: 

    10
  • صفحات: 

    92-100
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    713
  • دانلود: 

    156
چکیده: 

لطفا برای مشاهده چکیده به متن کامل (PDF) مراجعه فرمایید.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 713

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 156 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
اطلاعات دوره: 
  • سال: 

    2024
  • دوره: 

    4
  • شماره: 

    1
  • صفحات: 

    37-49
تعامل: 
  • استنادات: 

    0
  • بازدید: 

    11
  • دانلود: 

    0
چکیده: 

Load forecasting is a key component of electric utility operations and planning. Because of today's highly developed electricity markets and rapidly growing power systems, load forecasting is becoming an essential part of power system operation scheduling. This paper proposes a new short-term load forecasting model based on the large margin Nearest neighbor (LMNN) classification algorithm to improve prediction accuracy. The accuracy of many classification methods, such as k-Nearest neighbor (k-NN), is significantly influenced by the technique used to calculate sample distances. The Mahalanobis distance is one of the most widely used methods for calculating distance. Numerous techniques have been used to enhance k-NN performance in recent years, including LMNN. Our proposed approach aims to solve the local optimum problem of LMNN, compute data similarities, and optimize the cost function that establishes the distances between instances. Before using gradient descent to determine the ideal parameter values for the cost function, we employ a genetic algorithm to shrink the size of the solution space. Additionally, our method's forecasting errors are contrasted with those of the BPNN and ARMA models. The comparative findings show how well the recommended forecasting model performs in short-term load forecasting.

شاخص‌های تعامل:   مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resources

بازدید 11

مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesدانلود 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesاستناد 0 مرکز اطلاعات علمی Scientific Information Database (SID) - Trusted Source for Research and Academic Resourcesمرجع 0
litScript
telegram sharing button
whatsapp sharing button
linkedin sharing button
twitter sharing button
email sharing button
email sharing button
email sharing button
sharethis sharing button